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Overexposure and underexposure of items in the bank are serious problems 

in operational computerized adaptive testing (CAT) systems. These 

exposure problems might result in item compromise, or point at a waste of 

investments. The exposure control problem can be viewed as a test assembly 

problem with multiple objectives. Information in the test has to be 

maximized, item compromise has to be minimized, and pool usage has to be 

optimized. In this paper, a multiple objectives method is developed to deal 

with both types of exposure problems. In this method, exposure control 

parameters based on observed exposure rates are implemented as weights 

for the information in the item selection procedure. The method does not 

need time consuming simulation studies, and it can be implemented 

conditional on ability level. The method is compared with Sympson Hetter 

method for exposure control, with the Progressive method and with alpha-

stratified testing. The results show that the method is successful in dealing 

with both kinds of exposure problems. 

In computerized adaptive testing (CAT), items are selected on-the-fly. 

Adaptive procedures are used to select items with optimal measurement 

characteristics at the estimated ability level of examinees. CAT possesses 

the same advantages as other computer-based testing procedures, like 

increased flexibility and connection of administrative systems. Besides, for 

a CAT it also holds that test length can be decreased by almost 40 percent 

without decrease of measurement precision, and examinees are no longer 

frustrated by items that are either too difficult or too easy (see e.g. van der 

Linden, & Glas, 2000, Wainer, Dorans, Flaugher, Green, Mislevy, 

Steinberg, & Thissen, 1990). 

CAT systems are theoretically based on the properties of item 

response theory (IRT). In IRT, person parameters and item parameters are 
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separated. The item parameters are supposed to be invariant for different 

values of the person parameters. Therefore, items can be calibrated and the 

item parameters can be stored in item banks. From these item banks, items 

that provide most information at the estimated person parameter are 

selected. In many large scale testing programs, paper-and-pencil test have 

been replaced by CATs. For example for the Graduate Record Examination 

(GRE) and the Armed Services Vocational Aptitude Battery (ASVAB), 

CAT-versions are available now.  

CITO (National Institute of Educational Measurement) in the 

Netherlands administers several CATs, like MATHCAT (CITO, 1999), 

TURCAT (CITO, in press), DSLcat (CITO, 2002) and KindergartenCAT. 

MATHCAT is developed for diagnosing Mathematics deficiencies for 

college students (Verschoor, & Straetmans, 2000), TURCAT tests 

proficiency of Turkish as a second language, DSLcat tests Dutch as a 

Second Language, and KindergartenCAT contains tests for measuring 

ordering, language, and orientation in time and space abilities of young 

children (Eggen, 2004). These CATs, like almost all operational CAT 

systems encounter an unevenly distributed use of items in the bank.  

In general, most item selection procedures favor some items above 

others, due to superior measurement properties or favorable item 

characteristics. As a result, some items are overexposed. This might result 

in item compromise, which undermines the validity of score-based 

inferences (Wise & Kingsbury, 2000). On the other hand, some items might 

be underexposed, which is a waste of investments. Therefore, choosing a 

strategy for controlling the exposure of items to examinees has become an 

integral part of test development (Davis & Dodd, 2003). 

In this paper, a multiple objectives exposure control method is 

proposed for dealing with problems of both overexposure and 

underexposure of the items. First, a theoretical background is given. Then, 

the new method is introduced. The performance of the method is evaluated 

in two studies. Finally, recommendations about the use of the new method 

are given. 

THEORETICAL BACKGROU&D 

One of the first methods developed to deal with exposure control 

problems, is the 5-4-3-2-1 technique (Hetter, & Sympson, 1997, McBride, 

& Martin, 1983) applied in the CAT-ASVAB. This randomized procedure 

was developed to reduce probability of item sequences in the first five 

iterations of CAT. Kingsbury and Zara (1989) and Thomasson (1998) 
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developed different randomization methods aimed to reduce overall item 

exposure. Rotating item pool methods (Ariel, Veldkamp, and van der 

Linden, 2004, Way, 1998, Way, Steffen, and Anderson, 1998) and CAST 

(Luecht & Nungester, 1998) were developed to spread the items over 

different tests by a priori reducing the availability of items for selection. 

However, in CAT industry item-exposure control method based on the 

Sympson and Hetter method (1985) are most commonly applied. 

 

Sympson-Hetter methods 

Although some variations exist, the general idea underlying these 

methods can be described as follows. To define these methods two events 

have to be distinguished, the event that item i is selected by the CAT 

algorithm (Si), and the event that item i is administered (Ai). The probability 

that event Ai occurs is the probability that Ai occurs given that Si has 

occurred times the probability that Si occurs: 

 

P(Ai) = P(Ai| Si) * P(Si).                           (1) 

 

To control the item exposure, one could focus on either of both 

probabilities. In the Sympson-Hetter methods, exposure control is 

conducted after an item is selected. The conditional probabilities P(Ai| Si) 

are used as control parameters. These control parameters guide the 

probability experiment in which it is determined whether the selected item 

is administered or removed temporarily for the person tested from the pool.  

The idea underlying the method is that when rmax is the target value 

for the maximum exposure rate, the conditional probabilities can be set in 

such way that P(Ai) ≤ rmax. The procedure to find appropriate values for the 

control parameters is quite time consuming. In a series of iterative 

adjustment, the appropriate values can be found.  

These Sympson-Hetter methods suffer from several drawbacks. When 

the population is categorized based on ability, the exposure rates within sub 

groups might still be high. Time-consuming simulation studies have to be 

conducted for calculating the exposure control parameters. Moreover, the 

procedure for calculating the control parameters does not converge 

properly, and the claim that P(Ai) ≤ rmax holds, can not be validated (van der 

Linden, 2003). Finally, it is also known that the Sympson-Hetter method is 

hardly effective in dealing with underexposure problems. Underexposure 

refers to the problem that items in the pool are administered so seldom, that 

the expense for constructing them can not be justified. 
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Several improvements of the original procedure have been developed. 

Stocking & Lewis (1998) proposed to conduct exposure control conditional 

on ability level, to overcome the problem of high exposure rates for specific 

ability levels. They defined the events in (1) conditional on ability level. 

The new relationship can be described as 

 

P(Ai|θj) = P(Ai| Si ,θj) * P(Si|θj), j=1,..,J,         (2) 

 

where J defines the number of ability levels to take into account. The time 

needed to calculate the exposure control parameters increases J times, 

because control parameters have to be calculated for all J ability parameters. 

When this new procedure is applied, exposure rates within subgroups of the 

ability scale will also be below the specified level. This modification solves 

one of the problems of the method, but convergence problems and loss of 

total test information still exists. 

Van der Linden (2003) proposed to modify the Sympson-Hetter 

method to speed up the iterative adjustment process to find the exposure 

control parameters. In the Sympson-Hetter method, the exposure parameters 

are adjusted with the following rule: 
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where t is the iteration number, and  rmax is the desired target for the 

exposure parameters. The adjustment process can be speeded up by 

changing this rule into 
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where γ is a parameter to increase the size of the adjustment. Although less 

time is needed for finding exposure control parameters, the process is still 

generally tedious and time-consuming, particularly if the control parameters 

have to be set conditionally on a set of realistic ability values for the 

population of examinees. 
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Barrada, Veldkamp & Olea (2009) modified the Sympson-Hetter 

approach by varying the exposure control parameters throughout the test 

administration. To avoid that all items with high discriminating power are 

selected when estimation of trait levels is still uncertain, low values for rmax 

are imposed at the beginning of the test. The values of rmax increase during 

CAT administration. So, highly discriminating items are reserved for the 

later stages of the test.  

 

Eligibility methods 

Recently, van der Linden and Veldkamp (2004, 2007) proposed to 

formulate the exposure control problem as a problem of constrained test 

assembly. Like the Sympson-Hetter method a probabilistic algorithm is 

used. However, this method does not need time consuming simulation 

studies to find control parameters for the probabilistic experiment. Based on 

the observed exposure rates, the algorithm determines whether item 

eligibility constraints are added to the model for selecting the items in CAT. 

The method consists of several steps. First, a probability experiment is 

conducted to determine if an item is eligible. Second, ineligibility 

constraints are added to the test assembly model, and the model is solved. 

Three, if the addition of eligibility constraints leads to an infeasible model, 

the constraints are removed and the relaxed model is solved. The 

probability for an item of being eligible to examinee (j+1) can be expressed 

in terms of: 

εij: number of examinees through j for whom item i has been eligible. 

αij: number of examinees through j to whom item i has been 

administered. 

 

For examinee (j+1), item i is eligible with estimated probability: 
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with αij>0. For αij = 0, the probability of being eligible is defined to be 

P
j+1

(Ei) = 1.The method proved to perform well in dealing with 

(over)exposure of popular items in the bank.   

Both the (modified) Sympson-Hetter methods and the Eligibility 

methods mainly focus on overexposure of popular items in the pool. 

Although decrease of exposure rates of the most popular items results in 

some increase of exposure rates of less popular items, only exposure rates 
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of items with almost as favorable attributes as the most popular items 

increase. Unpopular items are still hardly selected. 

 

Methods for controlling underexposure 

For solving the problem of underexposure, different methods have 

been developed. Chang & Ying (1999) introduced α-stratified testing. In 

their approach, item pools are stratified with respect to values of their 

discrimination parameters α. The first items are chosen from the stratum 

with lowest α values. A second group of items are chosen from the 

subsequent stratum, and the last items in the test from the stratum with 

highest α values. This approach is based on the observation that estimates 

of the ability parameters are very unstable during the administration of the 

first few items of a CAT. Because of this, less discriminating items should 

be used in the earlier stages, while the most discriminating items should be 

used when estimates have been stabilized. The claim is that this approach 

would lead to a more balanced item exposure distribution and improve item 

pool utilization. Unfortunately, this method does not impose any bounds on 

exposure rates. Some observed exposure rates might be much higher than 

expected (Parshall, Kromrey, & Hogarty, 2000). Besides, the method is 

highly dependent on item bank properties. Usually, discrimination 

parameters are not uniformly distributed or the discrimination and the 

difficulty parameters might correlate positively.  

 A different method for solving the problem of underexposure is 

based on the observation that exposure problems result from the item 

selection criterion that is applied. When items are selected that maximize 

Fisher’s Information criterion, items with high discrimination values tend to 

be selected more often than the others. One way to reduce both over- and 

underexposure is to add a random component to the item selection criterion. 

Revuelta and Ponsoda (1998) elaborated this idea in their Progressive 

method. When this method is applied, a random value Ri in the interval 

[0,H], where H is the maximum value of the information function, is 

assigned to each item in the bank. Items are selected based on a weighted 

combination of the random component and Fisher’s information criterion: 
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where the weighting factor is determined by the serial position s of the item 

in the test, and the total test length n. For selecting the first item, the value 

of the criterion is dominated by the value of the random component, while 

for selecting the last item, the random component does not influence the 

criterion anymore. This method proved to be effective against 

underexposure, however, it is not conditional on ability level, and it can not 

be guaranteed that targets for exposure rates will be met. Another drawback 

is that items that are completely off target might be presented to a 

candidate. 

Dealing with exposure control problems in CAT is rather 

complicated. Although several promising methods have been developed, all 

of them seem to suffer from various drawbacks. Because of this, exposure 

control problems still exist. In most large scale testing systems, a rather 

pragmatic approach is used and a combination of over- and underexposure 

control methods is implemented. For example, in most CATs developed by 

CITO, a combination of the Sympson-Hetter method and a generalization of 

the Progressive method is implemented (Eggen, 2001). By implementing a 

combination of methods, an attempt is made both to maximize measurement 

accuracy, and to balance item pool usage.  

MULTIPLE OBJECTIVITY A&D EXPOSURE CO&TROL 

When an exposure control method is implemented, the test assembly 

problem can be formulated as an instance of multiple objective decision 

making (Veldkamp, 1999). The first objective is to assemble tests 

accordingly to the test specifications. In general, the amount of information 

in the test is maximized, while a number of constraints on test content, item 

format, word count or gender orientation of the items have to be met. The 

second objective in the process is related to exposure of the items. The 

objective is to obtain an evenly distributed use of items in the bank. The 

observation that the exposure control problem is a problem of multiple 

objectives in test assembly is the corner stone of the method presented in 

this paper. The main idea is that exposure control methods should represent 

this multiple-objectivity.   

Both objectives can be formulated in mathematical programming 

terms.  The first objective can be formulated as: 
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where xi denotes whether an item is selected (xi = 1) or not (xi = 0). The 

information in the test is maximized. The first general constraint represents 

constraints like content or item type. The second constraint represents 

specifications related to quantitative attributes like word count or response 

times. The third constraint is formulated to deal with dependencies between 

items like enemies, but also item sets. In this way, the first objective can be 

obtained.  

To formulate the second objective is slightly more complicated. In 

van der Linden and Veldkamp (2007) it is shown that the following equality 

holds: 

,n
i

i =∑ϕ
                             (8) 

where φi is the observed exposure rate, and n represents the test length. 

Because of this, it suffices to minimize the maximum exposure rate to 

obtain an evenly distributed use of the items in the bank. Therefore, the 

second objective can be formulated as 

 

1+

+

j

xj ii

i

ϕ
maxmin ,                   (9) 

 

where j is the number of previously tested examinees. These two objectives 

might conflict. To maximize the amount of information in the test, highly 

discriminating items are often selected. On the other hand, to obtain an 

evenly distributed use of the bank, these popular items can not be 
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administered to all candidates. It comes down to the test assemblers 

preferences, how to deal with these conflicting objectives. One method for 

dealing with multiple objective test assembly problems is to combine both 

the objectives in one single objective function, by using one of the 

objectives as a weighting function for the other (Veldkamp, 1999). When 

this method is applied to the exposure control problem, the information can 

be weighted with some function of the observed item exposure rates. The 

resulting objective of the test assembly problem can be formulated as: 

 

,)()(max∑
i

iii xIw θϕ                                (10) 

 

where w(φi) is a weighting function that represents the test assemblers 

preferences.  

Several weighting functions can be applied. For example, the function 

can be based on the observation that the use of popular items can be 

reduced by temporarily removing them from the pool of available items, 

until their observed exposure rate is smaller than rmax  (see Revuelta & 

Ponsoda, 1998). This weighting function is shown in Figure 1a.  

A second example is based on the observation that the use of 

unpopular items (φi << rmax) can be increased by increasing their weights. 

To boost the use of unpopular items, the weighting function might decrease 

for increasing exposure rates. This observation results in a weighting 

function shown in Figure 1b. 

The third example is related to test fairness. Because expelling some 

items from administration for some students, as in the first and second 

weighting function, might not be considered fair, assigning a small weight 

for popular items (φi > rmax) reduces the probability that they are selected, 

but does not make them ineligible. Two weighting functions that combine 

observations two and three are shown in Figures 1c and 1d. 

Moreover, the causes of over exposure can be taken into account 

when the weighting function is defined. The main cause of exposure 

problems lays in the amount of information provided by the item. Since the 

amount of information presented by an item is related to the squared 

discrimination of an item, a weighting function that takes the amount of 

information into account can be formulated as:  

 

     
.r()( max
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Figure 1. Weighting functions (weighting factor on y-axis and observed 

exposure rate on x-axis). 

 

 

 

In all these examples, a difference is made between items that are 

overexposed (φi > rmax) and those who are not (φi ≤ rmax). For both intervals 

different weighting functions can be defined, based on a number of 

observations. However, the question remains which weighting function 

performs best for which interval. 

A systematic approach to answer this question would be to distinguish 

between both intervals and to see which function for which interval results 

in the best exposure control method. 
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&UMERICAL EXAMPLES 

A comparison study was carried out to judge the performance of the 

multiple objective exposure control method. Several settings of the method 

were compared with the Sympson-Hetter method, the alpha-stratified 

method, randomized item selection, and CAT without exposure control. In 

the first example, different weighting functions were compared. Different 

methods for exposure control were compared in Example 2.  

  

Example 1. 

To find the best settings for the multiple objective exposure control 

method, several functions were implemented. The items in the bank were 

calibrated with the OPLM, a special version of the 2PLM, where the 

discrimination parameters are restricted to be integer. The OPLM is the 

general IRT model underlying all CATs developed by CITO. The item bank 

consisted of 300 items. The test length of all CATs was set equal to 40 

items. Fisher’s Information criterion was used to select the items. The 

ability was estimated with the Weighted maximum likelihood estimator 

(Warm, 1989), assuming that the item parameters are known. The initial 

estimate of the ability was set equal to zero. For all examples, 40000 

examinees were randomly sampled from a normal distribution. The 

maximum exposure rate rmax was set equal to rmax = 0.30 in the examples. 

These settings most closely resembled the CITO context. 

 To compare the results, the following criteria were applied. The 

performance of the CAT was evaluated by taking both the bias and the root 

mean squared error (RMSE) into account.  
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where p = 1,…,P runs over all persons.  

To control for underexposure of the items, three different functions 

were distinguished for φi ≤ rmax. The first function does not control for 
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underexposure of the items ( 1)( =iiw φ ). The second function tries to control 

for underexposure by assigning decreasing weights when the observed 

exposure rate increases. The function is defined such that the weight equals 

one for items that have not been administered yet                                            

( 1)0( ==iiw φ ), and it linearly decreases, where the weight for items with 

observed exposure equal to rmax is set equal to a constant ( crw ii == )( maxφ , 

where c << 1). The third function aims at the causes of underexposure, and 

relates the weights to the inverse of the squared discrimination. 

For overexposure (φi > rmax), four different functions where 

distinguished in this study. First, overexposure was not allowed                    

( 0)( =iiw φ ). In the second function, a small weight is assigned                        

( cw ii =)(φ ). In the third function, the weight linearly decreases, where the 

weight for items with observed exposure equal to rmax is set equal to a 

constant ( crw ii == )( maxφ , where c << 1), and the weight is set equal to 

zero when the observed exposure rate equals one ( 0)1( ==iiw φ ). The 

fourth function aims at the causes of overexposure, and relates the weights 

to the inverse of the squared discrimination. In the examples, the weighting 

constant was set equal to c = 0.4. 

When the multiple objective exposure control method is applied, any 

weighting function is a combination of function for controlling 

underexposure and a function for controlling overexposure of the items. The 

weighting functions were compared for two different settings, rmax = 0.3. 

Since 40 items were selected from an item bank of 300 items, the lower 

bound for rmax equals 0.133. Resulting bias and RMSE for rmax = 0.3 are 

shown in Table 1 and Table 2. The exposure rates of the items are shown in 

Figure 2.  

With respect to functions controlling for overexposure, the results 

were more or less what we had expected. The conditions where no overlap 

was allowed resulted in highest values for the RMSE. Lowest values were 

obtained when small weights were assigned to overexposed items. Both 

adaptive functions ended up somewhere between them. An unexpected 

effect was that controlling for underexposure resulted in smaller RMSEs. 

This might be caused by an interaction between the composition of the item 

pool and the adaptive item selection process. 
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Table 1. Bias for different combinations of weighting functions for 

under- and overexposure. 

 

  
ureUnderexpos  

 

Overexposure
 1)( =iiw φ  linear )( =iiw φ  

2
)(

−= iii aw φ  

0)( =iiw φ  0.000 0.000 0.000 

c )( =iiw φ  0.000 0.000 0.001 

linear )( =iiw φ  
0.000 0.001 0.000 

2
)(

−= iii aw φ  
0.000 0.000 0.000 

 

 

 

As can be seen in Table 1, the values for the resulting biases hardly 

differ from zero, and no significant differences between the conditions were 

found. 

 

 

  

Table 2. RMSEs for different combinations of weighting functions for 

under- and overexposure. 

 

  
ureUnderexpos  

 

Overexposure
 1)( =iiw φ  linear )( =iiw φ  

2
)(

−= iii aw φ  

0)( =iiw φ  0.098 0.094 0.096 

c )( =iiw φ  0.094 0.090 0.090 

linear )( =iiw φ  
0.095 0.091 0.092 

2
)(

−= iii aw φ  
0.096 0.093 0.093 
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Figure 2. Observed exposure for different settings of the multiple 

objective exposure control method rmax=0.30  
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The observed exposure rates are shown in Figure 2. This figure has to 

be read in the same way as both tables; the first row of the first column 

describes the results for the condition of no underexposure control 

1)( =iiw φ , and no overexposure allowed ,)( 0=iiw φ etc..   

For overexposure, the results were clear. The best results with respect 

to observed exposure rates were obtained when no overexposure was 

allowed (row 1). Allowing overexposed items to be used (rows 2-4) resulted 

in high overexposure of some popular items. These results can be explained 

by checking the weighting functions. Because the weighting functions just 

weight the information provided by an item, very informative items might 

still be selected when the difference in weights between overexposed and 

less popular items is small. The method of decreasing weights (row 3), 

resulted in smallest overexposure of the most popular items.  

For underexposure, the methods with decreasing weights (columns 2-

3) performed best. They performed better than the cases were no 

underexposure control was applied (column 1). With respect to observed 

exposure rates no differences were found due to the way the weights 

decreased. 

Taking both RMSE and observed exposure rates into account, the best 

results were obtained in when no overexposure was allowed (row 1) and 

underexposure was being controlled for with linearly decreasing weights 

(column 2). 

 

Example 2. 

To evaluate the performance of the multiple objective exposure 

control method, it was compared with the alpha-stratified method, the 

Sympson-Hetter method, and the progressive method in combination with 

Sympson-Hetter. For the alpha-stratified method we used four strata. 

Stratum 1 contained 40% of the items in the bank. Stratum 2 also contained 

40% of the items. Stratum 3 had 15% of the items. Stratum 4 had only 5% 

of the items. During the test assembly process, the same percentages of 

items were selected from the strata. To add some benchmarks, both 

randomized item selection and item selection based on Fisher Information 

without exposure control were added to the example. In this comparison 

study, the weighting function that performed best with respect to bias, 

RMSE and observed exposure rates in the first study was applied. The 

resulting function combined a linear part to control for underexposure and a 

weight equal to zero to control for overexposure. For every exposure 

control method, 40000 CATs were simulated. The maximum exposure rates 
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were set equal to rmax = 0.30 in these simulations. The results are shown in 

Table 3. 

 

 

Table 3. Performance different exposure control methods rmax = 0.30 

 

Method Bias RMSE 

no exposure control  0.000 0.086 

Multiple objective method 0.000 0.094 

Sympson-Hetter method 0.000 0.098 

Alpha-stratified method 0.000 0.109 

Progressive method (S-H) 0.000 0.097 

Randomized item 

selection 

0.001 0.133 

 

 

 

When the results in Table 3 are compared, it can be observed that the 

different exposure control methods did not result in any bias. Besides, the 

multiple objective exposure control method resulted in smallest RMSE.  

The observed exposure rates are shown in Figure 3. It can be seen that 

our implementation of the alpha-stratified method was not very successful 

in dealing with over-exposure. For some items the observed exposure rate 

exceeded 0.40. A different stratification might have performed better, 

although we did not succeed in finding good settings. With respect to 

underexposure control, the alpha-stratified method performed best. For 

practical applications, a combination of the alpha-stratified method with the 

Sympson-Hetter method or the multiple objective method might be 

recommended. Almost no differences were found between the Sympson-

Hetter method and the combination of the Progressive method and the 

Sympson-Hetter method. The progressive method performed slightly better 

with respect to underexposure. This implementation of the multiple 

objective exposure control method resulted in most items with maximum 

exposure rate. This also explains why this method resulted in smallest 

RMSE. 

 

 



Computarized Adaptative Testing 

 

351

 

Figure 3. Observed exposure rates for multiple objectives (dotted), 

Sympson-Hetter (dashed), Alpha-stratified (thin), and Progressive 

(thick) exposure control. 

 

DISCUSSIO& 

Exposure control is applied to computer adaptive testing programs for 

several reasons. The most important reason is to prevent item compromise. 

A second reason is to increase the usage of the item pool. Until now, several 

exposure control methods have been developed that deal with the problem 

of over-exposure successfully. Under exposure of the items is still a 

problem in many adaptive testing programs. 

The multiple objective exposure control method was developed to 

deal with both kinds of exposure control problems. One of the advantages 

of the new method is that no time consuming simulation studies have to be 

carried out. The new method can be implemented ‘on the fly’. During the 

administration, the additional time for selecting an item with the multiple 

objective exposure control method was less than a millisecond. In the first 

example, it can be observed how the weighting functions influence the 

resulting tests. For example, the best results for the RMSE are obtained for 

an weighting function that allowed overexposure of some popular items. In 
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other words, the tradeoff between RMSE and observed exposure rates can 

be controlled by defining appropriate weighting functions. 

The multiple objective exposure control method was described as a 

deterministic method of exposure control. This implies that any 

administration of the test directly influence the weights for the next 

candidates. If such a dependency is undesirable, a probabilistic 

implementation might be considered. The weighting functions )( iw φ  

determine the probability for an item i to be selected. Before any CAT is 

administered, a probability experiment is carried out for every item to 

decide whether it is selected for the pool or not. For examinee j+1, item i is 

eligible, that means available for selection, with estimated probability  

  

,)()()1(

ii

j wEP φ=+
                                       (14) 

 

where Ei denotes the event that item i is eligible. In the experiment, a 

random number u is drawn from the interval [0,1]. For u < P, the item is 

eligible, for u > P, the item is not elegible. This probability experiment is 

comparable to the one described in van der Linden & Veldkamp (2004). 

However, in this approach the test specialist can define the function that 

relates the observed exposure rates to the probability of being eligible. The 

result of this experiment is a subset of the item pool that can be used for test 

administration. 

Finally, since the multiple objective exposure control method is an 

interactive method where the parameters affecting the exposure control 

method are updated during the test administration period, some remarks 

have to be made about practical implementation. In a web-based 

environment, with testing over the internet, updating the parameters on-the-

fly seems rather straightforward. However, when thousands of examinees 

participate in a test at the same time updating the parameters every few 

minutes instead of continuous updating might be considered. This will 

reduce the probability of crashing the web-server. When the method is 

applied in classroom setting, which is most common for CITO CATs, the 

exposure rates resulting from different locations can be combined 

periodically.  

When the method is applied to operational CATs, one of the first 

questions is to choose which weighting function to implement. In the first 

example, several weighting functions were compared for a given item bank. 

This example just illustrates the effects of controlling for underexposure 
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and the effects of allowing overexposure of some of the items. The resulting 

bias (Table 1), RMSE (Table 2), and observed exposure rates (Figure 2), 

can not be generalized beyond this example. However, based on theoretical 

arguments, a practitioner could choose between controlling for 

underexposure ( linear )( =iiw φ or 
2

)(
−= iii aw φ ) or not controlling                

( 1)( =iiw φ ). The same kind of decision needs to be made about how strict 

the maximum exposure rate rmax has to be imposed. A small simulation 

study (comparable to the one in Example 1) can be carried out to get a 

feeling about how the method might work for an operational CAT with a 

given item bank. Even although we in general recommend performing 

simulation studies before starting any operational CAT, this step is not a 

necessary requirement for the implementation of the multiple objective 

exposure control method. The initial observed exposure rates can be set 

equal to (φi = 0) for all items, and the values of φi can be updated after every 

test administration. 

The multiple objectives exposure control method has not been 

implemented in any commercial software package yet. It is generally 

applicable to CAT programs based on, for example, the Weigthed Deviation 

Model (Stocking, & Swanson, 1993) or the Shadow Test Approach (van der 

Linden, 2005). For this study, the method was implemented in CAT 

software developed at CITO in The Netherlands. For operational use, 

practitioners either have to add a module that calculates the weights for each 

item give the observed exposure rates to their CAT software, and to 

implement these weights in their item selection procedures, or they can 

contact the authors. 
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